
Flow-edge Guided Video Completion
Supplementary Material

Chen Gao1, Ayush Saraf2, Jia-Bin Huang1, and Johannes Kopf2

1 Virginia Tech 2 Facebook

Overview

In this supplementary document, we provide additional implementation details
and results to complement the main manuscript.

1. We summarize the complete pipeline of our algorithm in pseudo-code in
Algorithm 1.

2. We show the runtime analysis and profiling to analyze the speed of our
algorithm.

3. We describe the training details for the edge completion network.
4. We present additional visual examples of the ablation study, highlighting the

effectiveness of our design choices.
5. We provide detailed per-sequence results in terms of PSNR, SSIM, and LPIPS

on the DAVIS dataset.
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1 Algorithm

We show our method pipeline in algorithm_illustration.mp4. We summarize our
complete pipeline in Algorithm 1. Our pipeline consists of three main components:
flow prediction, edge-guided flow completion, and video completion. We will
release the pre-trained flow-edge completion model as well as the source code to
facilitate future research.

Algorithm 1: Summary of our video completion algorithm.
1 Input: Color frames I1. . . In, mask frames M1. . .Mn.
2 Output: Completed frames I1. . . In (updated in place).
3 for every frame i ∈ 1. . .n do
4 Compute local and non-local optical flow Fi→j ,
5 j ∈ {i− 1, i+ 1, 1, dn/2e , n} (Equations 1 and 2).
6 for each computed flow field Fi→j do
7 Extract flow edges Ei→j using Canny edge detector [1].
8 Complete flow edges Ẽi→j using EdgeConnect [3] edge model.
9 Complete flow F̃i→j with edge guidance (Equation 3).

10 Compute flow error D̃i→j (Equation 4).
11 while any missing pixels exist in M1. . .Mn do
12 for every frame i ∈ 1. . .n do
13 Obtain temporal neighbors through propagation.
14 Fuse gradient images G̃x,i and G̃y,i (Equation 7).
15 Reconstruct color image Ĩi (Equation 8).
16 Update mask Mi(p) = 0, where |N(p)| ≥ 1.
17 Select frame Ĩf with most remaining missing pixels.
18 Complete Ĩf with DeepFill [5].
19 Set Mf = 1 (all pixels in this frame).
20 Set I = Ĩ.
21

2 Runtime analysis and profiling

Following [2], we also show the detailed running time analysis of our method in
Table 1. We report the time for each component of our method on the “CAMEL”
video sequence under the object removal setting. The resolution is 960 × 512.
There are 10721523 pixels being removed, which is 9.1% of the total pixels. Our
method runs at 7.2 frames per minute.
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Table 1: Running time analysis. We report the running time for each compo-
nent of our method on the “CAMEL” video sequence under the object removal
setting. The resolution is 960× 512.

Component Time (min.)

Flow completion
Flow prediction 1.20
Edge extraction and completion 0.45
Edge-guided flow completion 4.20

Video completion
Temporal propagation 4.31
Spatial inpainting 0.10
Poisson blending 2.29

Total 12.55

3 Training details

The only trainable component in our method is the flow edge completion network.
We build our flow edge completion network upon the publicly available official im-
plementation of EdgeConnect [3] edge model1. We load weights pretrained on the
Places2 dataset [6], and then finetune on 60 sequences in DAVIS 2017-test-dev
and 2017-test-challenge for three epochs.

Starting from the predicted flow between adjacent frames i and j, Fi→j , we
first calculate the flow magnitude image. We use the Canny edge detector [1]
to extract a flow edge map Ei→j from the flow magnitude image. We use the
following parameters for the Canny edge detector [1]: Gaussian σ = 1, low
threshold 0.1, high threshold 0.2. We randomly choose a mask from NVIDIA
Irregular Mask Dataset testing split and resize it to 256× 256.2 We crop the flow
edge map Ei→j and the corresponding flow magnitude images to 256× 256, and
corrupt them with the mask. The input to the flow edge completion network is
the mask (Figure 1a), the corrupted flow edge map (Figure 1b) and the corrupted
flow magnitude image (Figure 1c). We train the network to complete the flow
edge using batches of 8 randomly cropped 256× 256 patches.

Note that our edge completion network does not receive any additional
information regarding the stationary mask with a uniform grid of 5× 4 square
blocks during training.

4 Additional visual examples of the ablation study

In this section, we show additional visual examples of the ablation study to
highlight the effectiveness of our design choices.
Gradient domain processing. We compare the proposed gradient propagation
process with color propagation (used in [2,4]). Figure 2 shows a visual comparison.
When filling the missing region with directly propagated colors, the result contains
visible seams due to color differences in different source frames (Figure 2a). Our
1 https://github.com/knazeri/edge-connect
2 https://www.dropbox.com/s/01dfayns9s0kevy/test_mask.zip?dl=0

https://github.com/knazeri/edge-connect
https://www.dropbox.com/s/01dfayns9s0kevy/test_mask.zip?dl=0
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(a) Mask (b) Input edge (c) Input flow mag. (d) Output edge (e) Ground truth

Input

Fig. 1: Flow edge completion. Our flow edge completion network takes the
mask, the corrupted flow edge map and the corrupted flow magnitude image as
input, and complete the flow edge.

method operates in the gradient domain and does not suffers from such artifacts
(Figure 2c).
Non-local temporal neighbors. We study the effectiveness of the non-local
temporal neighbors. Figure 3 shows such an example. Using non-local neighbors
enables us to transfers the correct contents from temporally distant frames.
Edge-guided flow completion. We evaluate the performance of completing
the flow field with different methods. In Figure 4, we show examples of flow
completion results using diffusion, a trained flow completion network [4], and our
proposed edge-guided flow completion. The diffusion-based method maximizes
smoothness in the flow field everywhere and thus cannot create sharp motion
boundaries. The learning-based flow completion network [4] fails to predict a
smooth flow field and sharp flow edges. In contrast, the proposed edge-guided
flow completion fills the missing region with a piecewise-smooth flow and no
visible seams along the hole boundary.

5 Per-sequence results on the DAVIS dataset

We show the detailed per-sequence results in terms of PSNR, SSIM, and LPIPS
under stationary screen-space masks setting in Figure 5. Our proposed method
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(a) Color propagation (b) Propagated x/y gradient (c) Reconstruction

Fig. 2: Gradient domain reconstruction. Previous methods operate directly
in the color domain, which results in visible seams in the completed video (a).
We propagate in the gradient domain (b), and reconstruct the results via Poisson
reconstruction (c).

improves the performance over state-of-the-art methods for most of the video
sequences, under all three metrics.
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Without non-local neighbors With non-local neighbors

Fig. 3: Non-local temporal neighbor ablation. Video completion results with
and without non-local temporal neighbors. The result without non-local neighbors
(left) does not recover well from the lack of well-propagated content.

Input Diffusion Xu et al. [4] Ours

Fig. 4: Flow completion. Comparing different methods for flow completion.
Our method has better ability to retain the piecewise-smooth nature of flow fields
(sharp motion boundaries, smooth everywhere else) than the other two methods.
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Fig. 5: Per-sequence PSNR, SSIM and LPIPS on DAVIS under the
stationary masks inpainting setting.
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